Matrix Padé-Type Method for Computing the Matrix Exponential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Padé-Type Method for Computing the Matrix Exponential

Matrix Padé approximation is a widely used method for computing matrix functions. In this paper, we apply matrix Padé-type approximation instead of typical Padé approximation to computing the matrix exponential. In our approach the scaling and squaring method is also used to make the approximant more accurate. We present two algorithms for computing A e and for computing At e with many 0 t  re...

متن کامل

Efficient Scaling-squaring Taylor Method for Computing the Matrix Exponential∗

The matrix exponential plays a fundamental role in linear systems arising in engineering, mechanics and control theory. In this paper, an efficient Taylor method for computing matrix exponentials is presented. Taylor series truncation together with a modification of the PatersonStockmeyer method avoiding factorial evaluations, and the scaling-squaring technique, allow efficient computation of t...

متن کامل

Computing a Matrix Function for Exponential Integrators

An efficient numerical method is developed for evaluating φ(A), where A is a symmetric matrix and φ is the function defined by φ(x) = (ex − 1)/x = 1+ x/2 + x2/6+ .... This matrix function is useful in the so-called exponential integrators for differential equations. In particular, it is related to the exact solution of the ODE system dy/dt = Ay + b, where A and b are t-independent. Our method a...

متن کامل

New Scaling-Squaring Taylor Algorithms for Computing the Matrix Exponential

The matrix exponential plays a fundamental role in linear differential equations arising in engineering, mechanics, and control theory. The most widely used, and the most generally efficient, technique for calculating the matrix exponential is a combination of “scaling and squaring” with a Padé approximation. For alternative scaling and squaring methods based on Taylor series, we present two mo...

متن کامل

Computing the additive degree-Kirchhoff index with the Laplacian matrix

For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics

سال: 2011

ISSN: 2152-7385,2152-7393

DOI: 10.4236/am.2011.22028